
University of Southern California

Department of Contracts and Grants

Los Angeles, CA 90089-1147

Distributed VIRtual System (DIVIRS)
Project

formerly

Center for Experimental Research in

Parallel Algorithms, Software, and Systems

Semiannual Progress Report #11
November 1993

Principal Investigator:

Herbert Schorr

Co-principal Investigator

B. Clifford Neuman

USC/Information Sciences Institute

Prepared under NASA Cooperative Agreement NCC 2-539

for Henry Lum, Technical Officer

NASA Information Sciences Division 244-7

The views and conclusions contained in this document are those of the authors and should not be interpreted as representing the official policies,

either expressed or implied, of the National Aeronautics and Space Administration, the Defense Advanced Research Projects Agency, or the U.S.
Government.

Semiannual Progress Report

Covers period 1 May 1993 through 31 October 1993

As outlined in our continuation proposal 92-ISI-50R (revised) on NASA cooperative agreement

NCC 2-539, we are (1) developing software, including a system manager and a job manager, that

will manage available resources and that will enable programmers to develop and execute parallel

applications in terms of a virtual configuration of processors, hiding the mapping to physical nodes;

(2) developing communications routines that support the abstractions implemented in item one; (3)

continuing the development of file and information systems based on the V'mual System Model;

and (4) incorporating appropriate security measures to allow the mechanisms developed in items

1 through 3 to be used on an open network.

The goal throughout our work is to provide a uniform model that can be applied to both parallel

and distributed systems. We believe that multiprocessor systems should exist in the context of

distributed systems, allowing them to be more easily shared by those that need them. Our work

provides the mechanisms through which nodes on multiprocessors are allocated to jobs running

within the distributed system and the mechanisms through which files needed by those jobs can be

located and accessed.

The Prospero Resource Manager

Conventional techniques for managing resources in parallel systems perform poorly in large dis-

tributed systems. To manage resources in distributed parallel systems, we have developed resource

management tools that manage resources at two levels: allocating system resources to jobs as needed

(a job is a collection of tasks working together), and separately managing the resources assigned

to each job. The Prospero Resource Manager (PRM) presents a uniform and scalable model for

scheduling tasks in parallel and distributed systems. PRM provides the mechanisms through which

nodes on multiprocessors can be allocated to jobs running within an extremely large distributed

system.

The common approach of using a single resource manager to manage all resources in a large system

is not practical. As the system grows, a single resource manager becomes a bottleneck. Even within

large local multiprocessor systems the number of resources to be managed can adversely affect

performance. As a distributed system scales geographically and administratively, additional prob-

lems arise.

PRM addresses these problems by using multiple resource managers, each controlling a subset of

the resources in the system, independent of other managers of the same type. The functions of

resource management are distributed across three types of managers: system managers, job man-

agers, and node managers. The complexity of these management roles is reduced because each is

designed to utilize information at an appropriate level of abstraction.

During the reporting period, we continued development of PRM. We integrated PRM with the

Prospero Directory Service, using the Prospero Directory Service to maintain information about

-1-

programsfor useby thejob manager.Wealsoimplementedalibrary thatallowsexisting programs

written for the Parallel Virtual Machine (PVM) parallel computing environment from Oak Ridge

National Laboratory to rununmodified over PRM. The programs must be relinked with our version

of the communication library, but the interface to the library is the same as that for PVM.

The current implementation of the Prospero Resource Manager runs on a collection of Sun3,

SPARC, and HP9000/700 workstations running various versions of the Unix operating system, and

a single Inte1486 personal computer running Mach. Communication between the job, system, and

node managers, and between tasks in a job is supported by a reliable delivery protocol based on the

user datagram protocol (UDP) running over local and wide-area networks. Heterogeneous execution

environments are supported - a system manager may manage nodes of more than on processor type.

In the common case there is one system manager for each site. For example, our setup consists of

one system manager responsible for a set of SPARCstations on USC's main campus, another man-

aging a collection of Sun3, SPARC, and HP700 workstations at ISI, 15 miles away from the main

campus, while a third manages a set of HP700 workstations at MIT, across the country. We have

run applications that use processors at all three sites.

Programmers link executables for their tasks with the communication library we provide. Depend-

ing on how PRM has been configured users then create a job description file or they make suitable

entries in the Prospero Directory Service. To run a parallel application, users invoke the job manager

passing it the name of the application. I/O to the terminal and to files that are not otherwise accessible

to the application is handled through an I/O task that runs on the user's workstation.

A paper describing the Prospero Resource Manager was presented at the Second International

Symposium on High Performance Distributed Computing in July. An advance copy of that paper

was included with the previous semi-annual report. This paper has subsequently been invited for

publication in a special issue of the journal Concurrency: Practice and Experience.

Our plans for the next year include continued development of PRM. We hope to use PRM to make

a prototype embeddable touchstone multi-processor (built by the EV project at ISI) available to

Intemet users. We have started to develop debugging and performance tuning tools for parallel

applications. These tools take advantage of the user level job manager. Work is underway to support

suspension and subsequent migration of tasks. Work is planned to allow sequential applications to

run remotely by PRM without relinking with our communication libraries.

The Prospero File System and Directory Service

Dunng the reporting period, we continued development of the Prospero File System and Directory

Service, a file system and directory service based on the V'trtual System Model. In July 1993, an

initial version of a menu browser was released together with a gateway that made information from

the Gopher service available to Prospero users. Gateways from the Gopher Menu Browser and the

X-Mosaic hypertext browser to information exported using the Prospero protocol have been im-

plemented by Pandora systems and Bunyip Information Systems.

-2-

We haveaddedsupportfor a newaccessmethodbasedon theco_ attributethatis suitedto
theretrievalof datafrom files, wherethecontentsof a file canbesentasanattributeof the file,
reducingthenumberof exchangesneededtoaccessafile. In supportof theCOnTraCtSaccessmethod
we haveextendedtheProsperoimplementationto supportbinarydatavaluesfor attributes.This
techniqueis suitableprimarily for smallfiles,andaccessto largerfiles is bestperformedusingan
accessmethodseparatefrom thedirectoryserviceitself. Wehavebegunimplementationof a sep-
arateProsperoDataAccess Protocol in support of such access. The Prospero Data Access Protocol

will provide a common protocol for access to local files and gateway access to remote files using

alternative access methods, thus reducing the number of access methods that must be supported by

Prospero applications. We have also developed prototype tools to generate transitive indexes. Tran-

sitive indexing is a scalable technique for generating high-level indices that direct users to infor-
marion of interest.

With our recent improvements to the release, commercial organization have started to develop

systems based on Prospero. America Online has contracted with Pandora systems, who is devel-

oping a system that uses Prospero to make information from the Intemet available to users of

America Online. Bunyip Information Systems is working with several large publishers to make

available information provided by the publisher to Intemet users on a subscription basis. This

information will be accessed by users of the service using Prospero. We are working with other

organizations as well, including the Open Computing Security Group, which is considering the use

of Prospero as a component of the internal information systems they are developing for several
clients.

During the reporting period, a paper describing the use of Prospero as a base for building information

infrastructure was presented at the INET'93 conference and a paper on the use of Prospero in support

of location-independent computing was presented at the Usenix Symposium on Mobile and Loca-

tion-Independent computing. Copies of those papers are attached.

Our plans for the next year include improvement of the Prospero release, including completion of

support for the Prospero Data Access Protocol. We will also continue our work on transitive indexing

concentrating on methods for querying the indices, and looking at ways to improve our methods

for generating the indices.

Security for Distributed Systems

We have continued work to integrate appropriate security mechanisms into Prospero. Support was

added for password based authentication for Prospero directory queries. Although Kerberos au-

thenticarion was already supported, a weaker form of authentication was needed for users at sites

that don't run Kerberos, and passwords are better than no authentication at all. Support was also

added to the Prospero Directory Service protocol for billing. These changes support a range of

billing methods from the inclusion of credit card numbers, to direct billing options, to mechanisms

that will be supported in the future such as proxy checks, and anonymous electronic currency. While

we discourage the use of techniques that are vulnerable to compromise, such as sending a credit

card number unencrypted on the network, we recognize that application developers will use such

-3-

methodsanyway.By providing a commonbilling frameworkwithin which they can usesuch
methods,thehooksfor moresecurebilling mechanismwill alreadybepresentin applicationpro-
tocolswhenthosesecurebilling mechanismsareready.

The widespreaduseof the computing and information infrastructure we are developing as part of

the DIVIRS project requires an underlying security infrastructure to provide fine-grained access

control mechanisms to protect such resources and accounting mechanisms to manage their use. We

presented a paper at the 13th International Conference on Distributed Computing Systems discuss-

ing the need for such a security infrastructure and describing a possible mechanism to provide it.

A copy of that paper was included with the last semi-annual report. We have separately proposed

to develop such security infrastructure and have implemented the Prospero Resource Manager and

the Prospero Directory Service so that it can take advantage of such infrastructure if it becomes
available.

In a paper accepted for presentation at the ACM Conference on Computer and Communications

Security we describe how electronic currency can also be implemented on top of such a security

infrastructure. A copy of that paper is attached.

APPENDIX A - PAPERS

The following papers were prepared, accepted for publication, or presented during the reporting

period. Copies of the first three papers are attached to this report.

Gennady Medvinsky and B. Clifford Neuman. NetCash: A design for practical electronic currency

on the Interact. In Proceedings of the first ACM Conference on Computer and Communications
Security. Fairfax VA, November 1993.

B. Clifford Neuman and Steven Seger Augart. Prospero: A base for building information infrastruc-

ture. In Proceedings oflNET'93. San Francisco, August 1993.

B. Clifford Neuman, Steven Seger Augart, and Shantaprasad Upasani. Using Prospero to support

integrated location-independent computing. In Proceedings of the Usenix Symposium on Mobile

and Location-Independent Computing. Cambridge MA, August 1993.

B. Clifford Neuman and Santosh Rao. Resource management for distributed parallel systems. In

Proceedings of the 2nd International Symposium on High Performance Distributed Computing.

Spokane, July 1993. (copy included with last semi-annual report)

B. Clifford Neuman. Proxy-based authorization and accounting for distributed systems. In Pro-

ceedings of the 13th International Conference on Distributed Computing Systems. Pages 283-291.

Pittsburgh, May 1993. (copy included with last semi-annual report)

-4-

ACM

ARPA

DIVIRS

EV

INET'93

I/O

ISI

MIT

PRM

PVM

UDP

USC

APPENDIX B - GLOSSARY

Association for Computing Machinery

Advanced Research Projects Agency

Distributed Virtual Systems

Embeddable Variant

The 1993 annual conference of the Interact Society

Input/Output

Information Sciences Institute

Massachusetts Institute of Technology

Prospero Resource Manager

Parallel Virtual Machine

User Datagram Protocol

University of Southern California

-5-

NetCash: A design for practical electronic currency on the Internet

Gennady Medvinsky B. Clifford Neuma_

Information Sciences Institute

University of Southern California

Abstract

NetCash is o framework that supports realtime electronic pa W

merits with provision of anonllmitll over an unsecure network.
It is designed to enable new types of services on the Internet

which have not been practical to date because of the absence

of a secure, scalable, potentially anonymous payment method.
NetCash strikes a balance between unconditionallll anony-

mous electronic currency, and signed instruments analogous

to checks that ore more scalable but identifll the principals in

a transaction. It does this bll providing the framework within

which proposed electronic currencll protocols can be integrated
with the scalable, but non-anonvrnons, electronic banking in-

]rastructure that has been proposed for routine transactions.

1 Introduction

As the world becomes more connected, the number and va-
riety of network resources and services requiring monetary

payments will grow rapidly. For example, access to online
documents might require payment of royalties. Many oflline
services that formerly relied on cash now use electronic pay-
ment methods. More recently, protocols have been proposed

[5] to support online payment for such services over open
networks. While these protocols are suitable for the vast
majority of transactions, most do not protect the identities
of the parties to a transaction.

Concern for privacy dictates that it should be possible to
protect the identity of the parties to a transaction. This is
important to prevent the accumulation of information about
the habits of individuals, e.g., the documents they read, or
the items they purchase. It is also important to protect par-
ties that receive payment in certain situations, such as re-
wards. Many protocols have been proposed for anonymous
transactions, among them those by Chaum [2]. These pro-
tocols typically require a central bank that is involved in all
transactions.

In this paper, we present a framework for electronic trans-
actions that combines the benefits of anonymous transac-
tions with the scalability of non-anonymous online payment
protocols. The paper begins with a discussion of possible
requirements for electronic payment systems, followed by a

discussion of related work. We then present a scalable frame-

work for anonymous transactions, discuss the benefits of the
framework, and describe how it can be applied to electronic
currency protocols. The paper conclude_ with a discussion
of the scope and limitations of the framework.

©Association for Computing Machinery 1993 This paper will ap-
pear in the Proceedings of the First ACM Conference on Computer
and Communications Security, November 1993. Permission to copy
without fee all or part of this material is granted provided that the
copies arc not made or distributed for direct commercial advantage,
the ACM copyright notice and the title of the publication and its date
appear, and notice is given that coping is by permission of the Asso-
ciation for Computing Machinery. To copy otherwise, or to republish,
requires a fee and/or specific permission.

2 Requirements for electronic currency

Among the desirable properties for an electronic currency
system are: security, anonymity, scs]ability, acceptabi]Jty, of-
Rine operation, transferab_ty, and hardware independence.
Some of these requirements are also described in [6].

Security: Forging paper currency is difficult. Unfortu-
nately, electronic currency is just data and is euily copied.

Copying or double spending of currency should be prevented
or detected. Ideally, the illegal creation, copying, and reuse
of electronic cash should be unconditionally or computation-

ally impossible. Some systems rely instead on post-fact de-
tection and punishment of double spending [2].

Anonymity: The identity of an individual using dec.
tronlc currency should be protected; it should not be possible

to monitor an individual's spending patterns, nor determine
one's source of income. An individual is traceable in tradi-

tional transaction systems such as checks and credit cards.

Some protocols are unconditionally untraceable, where an
individual's spending can not be determined even if all par-

ties collude [1, 2]. For some transactions, weaker forms of
anonymity may be appropriate, e.g. traceabRity can be made

di_cult enough that the cost of obtaining such information

outweighs the benefit.
Scalabillty: A system is scalable if it can handle the ad-

dition of users and resources without suffering a noticeable
loss of performance. The existence of a central server through

which transactions must be processed limits the scale of the

system. The mechanisms used to detect double spending
also affects scalability. Most proposed e-cash protocols as-

sume that the currency server will record all coins that have

been previously spent and check this list when verifying a

transaction [2, 6, 7]. This database wiU grow over time, in-

creasing the cost to detect double spending. Even if the life
of a coin is bounded, there is no upper bound on the amount

of storage required since the storage requirement depends on
the rate at which coins are used, rather than on the number
of coins in circulation.

Acceptability: Most e-cash proposals use a single bank
[2, 6, 7]. In practice, multiple banks are needed for scalabil-
ity, and because not all users wR1 be customers of a single
bank. In such an environment, it is important that currency

minted by one bank be accepted by others. Without such ac-
ceptability, electronic currency could only be used between
parties that share a common bank. When currency minted

by one bank is accepted by others, reconciliation between
banks should occur automatically. To our knowledge, Net-

Cash is the first system that satisfies this requirement.
Off-llne operation: The ability for two parties to make

a safe transaction without instantaneously contacting the au-

thority that issued the currency is desirable.
Transferability: The ability of the recipient of elec-

tronic currency to spend the currency with a third party

without first contacting the currency server is desirable. Such
transferability can improve anonymity, but it complicates the

mechanism that assures security.

Hardwareindependence:Topreventdoublespend-

ing during ofliine operation, some e-cash protocols rely on
tamper-proof hardware [4]. A drawback to this approach
is that new technology might allow the compromise of such

hardware, leaving users vulnerable to double spending.

$ Related work

There have been numerous recent proposals for protocols

to support unconditionally untraceable, electronic currency
[6, 7]. Many of these proposals are variants of and improve-
ments upon proposals by Chsum [2, 3]. Although these pro-
tocols address many of the the requirements from section 2,
unconditional anonymity is achieved at the expense of scal-
ability, and acceptability is unaddressed.

NetCash provides sc,_]ability and acceptability with weaker
wnonymity and only a limited form of offline-operation. We
believe that for many transactions this is sufficient. Where
unconditional anonymity or completely off,he operation is
required, our framework can be extended to integrate ex-
changes from other protocols.

Protocols have been proposed that support scalable dis-
tributed accounting without anonymity [5]. These proto-
cols provide an accounting infrastructure within which funds
can be transferred between clients ud servers. Because

these protocols do not provide anonymity, they are not by

themselves sufficient for our purposes in this paper. They
will, however, be used to reconcile balances across currency
servers, and to allow users to withdraw and deposit money
into existing accounts.

4 Framework

NetCash is designed to support realtime electronic payments
with varying transaction anonymity characteristics to geo-
graphically dispersed clients in multiple administrative do-
maJus. The primary contribution of NetCash is as a frame-

work for integrating anonymous electronic currency into the
global banking and accounting infrastructure. Section 5 de-
fines a practical electronic currency protocol that provides
weaker anonymity than the unconditional anonymity pro.
vided by Chanm [2]. The framework is useful even where

unconditional anonymity is required since the protocols im-
plementing Chanm's currency can replace the basic building
blocks of the protocol described in section 5, while leaving
the basic framework intact.

The NetC_sh infrastructure is based on independently
managed, distributed currency servers that provide a point of
exchange between anonymous electronic currency and non-

{Certif_id, C$_uame, Kcs, issue_date, exp_date}K_ c

Figure 1: A certificate for minting currency

{Ca_name, s_addr, exp.date, serial_hum, coin_val)K_,
CertiLid

Figure 2: Electronic coin

particular currency server named in the certitlcate, the pub-
lic key of the currency server along with the date of issue
and an expiration date of the certificate. All the information

is scaled with the private key of FIC. Based on this certifi-
cate different currency servers and financial institutions will
accept the currency of a given server as legal tender. The

consequences of a compromise of/(._c are severe.
It is up to the client to select s currency server. A rea-

sonable choice could be based on geographical proximity
and the amount of trust the client places in the currency

server. A currency server provides the following services

to its clients: coin verification (detection of double spend-

ing), coin exchange for untracesbility, purchasing coins with
checks, cashing in coins for checks. The latter two services

as we]] as verification of coins minted by other servers relies
on the accounting infrastructure described in [5] and is not

further described in this paper. Below, we describe the basic
function provided by the currency server to facilitate coin

verification and potentially anonymous coin exchanges.

4.1 Functional;ty and structure of NetCush components

A coin in our protocol (see figure 2) includes among other
information s serial number signed with the currency servers

private key. This information uniquely identifies the coin to
the currency server that issued it. The currency server keeps
a list of serial numbers for all outstanding coins I . When a

participant in a monetary transaction sends a coin for veri-
fication, the currency server checks the coin's serial number

against the outstanding list. If the serial number is found,
the coin is valid (has not been spent before). The serial num-
ber is deleted from the llst, and g new coin with a different
serial number is issued to the client and the new serial num-

ber added to the llst. If a coin is tendered for which the

serial number is not found, an attempt at double spending
has been detected and the exchange is refused.

A currency server is implemented as a collection of servers
connected on a network. This set of servers has a collective

name valid on the Internet. InitiaJJy, each server is alJowed to

anonymous instruments such as electronic checks. In the create a number of coins based on a policy set by the agency
w msunng the currency Each serverframe ork, checks based on the global accounting infrastruc, i " . will manage coins with a

ture [5] tie together currency servers in different adminis- range of values. . , . .
_ne strucCure ox an electromc coin is shown in figure 2.trative domains, into a financial federation where currency

minted by different servers is accepted.

An organization wishing to set up and manage a cur-
rency server obtains insurance for the new currency from an

agency similar to federal deposit and insurance corporation;

the currency is backed by account balances registered to the
currency server in the non-anonymous accounting infrastruc-
ture. We will refer to the insuring agency as the federal in-

surance corporation (FIC). To add a new currency server, an
authentication service is used to establish a secure connection

between the currency server and FIC. The currency server

creates a public key pair and sends the public key to FIC over
the secure channel (the corresponding private key is used for

signing coins). In return FIC issues a certificate of insurance

for producing and managing the currency. Figure I shows a

certificate of insurance. It includes ffiunique ID to identify a

The monetary value of the coin is specified in the coin.val
field. An internet address is part of the coin, allowing the
coin to be sent directly to the server keeping track of it. If
the currency server is not reachable at the address in a coin,
the name of the currency server (CS.name) is used to find
the address by querying a directory server. Time stamps in
the coins limit the state that must be maintained by each

currency server.
All information in a coin is sealed with the private key

K_ of the currency server. A client wanting to decrypt the
coin can use the Certif_id, which provides a mapping to an
appropriate certificate, thus obtaining the public key Kcs.

The validity of the coin is proven upon successful decryption

1 Depending on the characteristics of currency used, this list might

be represented u m bit vector or u I list of serlsJ numbers.

of the coin, but the fact that it has not been double spent is
not assured until the coin is exchanged for a new coin directly
with the currency server.

$ NetCash exchange protocols

In this section, we define protocols for monetary exchanges
with provision of anonymity. We will concentrate on proto-
cols providing practical anonymity. In our protocol descrip-
tion, we make the assumption that clients use different cur-
rency servers, each of which mints its own currency backed
by account balances in the non-anonymous accounting infras-

tructure, but registered in the name of the currency server

itself, not its clients. For the sake of clarity in our proto-
cols, we refer to such non-anonymous transactions using this
accounting infrastructure as the transfer of a check. The me-

chanics of the non-anonymons transfers will not be discussed
here but can instead be found in [5].

5.1 Notet|on

The participants in our protocols are: clients, merchants,

and currency servers. The first two are represented as A and
B, the currency servers are denoted as CS. Banks are simply
merchants in our protocol and are also represented by A and
B. X stands for a_ny participant.

The term 'transaction' is used here to mean a monetary
transaction between participants. A payment happens in one
direction from A to B. Encryption is represented by curly
braces {). A public key is represented as the letter K with a
subscript naming the owner of the key. A subscript ending
with letter N indicates a newly generated key not advertised

anywhere in association with the principal's identity. A pri-
vate key is the inverse of the public key and is represented

as K_'el_. Keys for a symmetric encryption system are repre-
sented by the letters SK with a subscript.

5.2 Baslc bulldlng blocks

In this section, we describe basic exchanges that serve as
building blocks for later protocols. As discussed in section 4,

currency servers issue coins that may be used by their clients
while preserving their anonymity. Currency servers provide
the point of entry to the accounting infrastructure, accepting
coins from other currency servers as well as other financial

instruments (checks for example).
Anonymity of a client is preserved in a pure currency ex-

change with the CS for several reasons: the CS exchanges
coins with a client by providing new coins having different
serial numbers and does not keep records pairing the coins
accepted with those issued. The exchange occurs anony-

mously; the CS does not know who is trading in the coins.
It might be the client itself, or an anonymous merchant that
just accepted the coins and needs to exchange them to be

sure that they are not double spent. Finally, the client se-
lects the CS to be used and is likely to choose one it trusts.

5.2.1 Exchange wlth the currency server

The basic exchange shown in figure 3, provides the follow-
ing services: coin verification (detection of double spend-
ing), coin exchange for untraceabifity, purchasing coins with
checks, and cashing in coins for checks. Only the latter two
operations expose the identity of X. Initially, X is assumed
to know the currency server's public key /t'cs, cached from
previous transactions or obtained directly from CS embed-

ded in a certificate (see figure I). In step I, X sends a check
or a coin (collectively referred to as an instrument), SEx a
newly chosen secret key and an in,cation of the transaction

to be performed (e.g., whether it wants new coins or a check,

I. {instrument, SKx, transaction}Kcs
2. {instrument)S/(x

Flgure 3: Exchange with the currency server

_,.. Ib _.,

.' 2______, _q'.......]_

]&. KAN

lb. { Kjsjv }KAJv
Ic. {coins, SKAjvl, Ko,,, S.id]Kvjv, {Certif_id, Kcs,

ksue_date, expiration.date) K_ c

2. {{amount, TAd, date }K_ }SKAI¢I

Figure 4: S|mple payment, optional steps: la & lb.

and if a check, the name of the party to which it should be

payable), all sealed with the currency server's public key.
If the instrument provided is a coin msued by the currency

server itself, the coin is checked for double spending by ver-
flying whether the record associated with the coin exists. If
the instrument is a coin issued by another currency server,

the local currency server contacts the remote currency server

to convert the coin, accepting in return a check payable to
the local currency server, which is then cleared through the
global accounting infrastructure. If the instrument is a check,
the local currency server clears it, depositing the proceeds in
its own account.

In the second step, the server returns the desired instru-
ment, either newly issued coins, or a check made payable
to the individual named in the transaction. Encryption with

Sl(x, proves the identity of the CS and prevents the contents

of the message from exposure to an attacker.

5.2.2 S;mple payor-payee exchange

Figure 4 shows a simple payment protocol where A re-
mains anonymous. B has the option to remain anonymous

with additional provisions described below. Upon comple-
tion of the protocol, B is not protected against double spend-

ing and A is not guaranteed a valid receipt.
Initially A is assumed to posses B's address. Messages la

and Ib are used to obtain B's public key, either one that iden-

titles B, or one generated on the fly if B is to remain anony-

mons. If A already knows B's public key these messages

may be dropped. In step Ic, A sends the coins=, the identi-
tier of the desired service S_id along with two keys SKAJVl
and l(oe°. B uses Kc$ to verify that a certified currency

server minted the coins. In order to pair the coins with a

connection, B retains the session key /{'°e°; at the time the
service is to be provided, B verifies that A knows the ses-
sion key. In the last step, B returns a receipt signed with its
private key and encrypted with SI{'ANI, thus preventing the
contents of the message from exposure to an attacker. The
receipt includes amount paid, date and a unique identifier
T_id that will be used along with the session key to obtain
the service.

Note if steps]a and lb are used to obtain an anonymous
public key, the protocol can withstand passive attacks in the

_The insurance certificate for the coins can be obtained in one of
the following ways', directly from the currency server, sent with the
coins _ shown in figure 4, or retrieved from a directory service.

I. {coins, SKANz,]_ee,, S-id)Kn
2. {coins, SKa_ , transaction)Kc$

3. {new.coins) SKaN

4. {{amount, T_id, d•te }K_ z }SKAJVZ

Figure 5: Prevention of double spending.

sense th•t the privacy of the transaction is maintzdned, but is
vulnerable to a_n active attack where an anonymons attacker

imperson•tes the anonymons service provider.

5.3 Comb|ning the bu;Id;ng blocks

Below, we define protocols preserving the p•yee's and payor's
anonymity using combin•tions of bul]dlng blocks to provide
guarantees _gainst double spending, no receipt, or invalid
receipt. To avoid redundancy, we omit the detailed descrip-
tion of steps within • given block; refer to section 5.2 for this
inform•tion.

5.3.1 l:xch•nge w|th protect;on from double spend]ng

We combine the two protocol modules in figures 3 and 4
as shown in figure 5 to protect B from double spending by

u anonymous payor A. A is assumed to know B's public
key, but the anonymity of B can be protected by adding
message la and Ib from figure 4. After receiving coins from

A, B verifies the coins with the currency server. If the coins
haven't been spent already, then B issues a receipt to A.
The shortcoming of this protocol is that it only provides
protection from fraud by the payor. B could simply spend
A's coin without providing a valid receipt. The protocol
presented in the next section solves this problem.

5,3.2 Exchange w;th both part|es protected from fraud

We would llke to extend the model presented in section 5.3.1
to eliminate B's ability to cheat. The protocol presented in

this section preserves A's anonymity, protects B from double
spending, &nd guarantees A • valid receipt or its money back.

To make such guarantees possible we extend the definition of
a coin. A coin can be customized for a given principal, i.e.,
it c_n only be used by that princip&! for • cert_ window
of time. Thus, the payor A can use the currency server to
obtain • coin triplet <CB,CA,Cx>. Each coin in the triplet
has the same serial number and coin value.

During the first window, Ca is the only coin that can
be used with the currency server. In the next window, only
CA can be used, and in the last window the Cx coin is used
exclusively. This can be implemented by embedding window
boundaries (time st•raps) into each coin in the triplet.

The first two coins, intended for B and A respectively
have keys embedded in them. If either party wants to use
its coin in • transaction with CSI, it must prove knowledge
of the embedded key. For example B's public key Kn is

encrypted in Ca, during the transaction with CSI it must
prove knowledge of K_*. The third coin Cx, does not have
• key encrypted in it and can be used by anyone. Additional
information embedded in CA is B's public key, this is done to
reduce the amount of state information needed to be main-

tained by the server in order to issue A • receipt. Also, an
addition&] bit needs to be a._oci•ted with a coin serial num-

ber in the CSI's database to keep track of whether A or B
spent the coin.

In the transaction with B, A will keep coins Cx and CA

and pass Cs to B. If B does not give • receipt to A, A

I. (coins, SKA_vz, K_, dates, dafeA, amount}Kcs3

2. {< Cs,C.,Cx>, <,,Cx>}SK.NI
3. { Cs, SK._,, Ko.o, SAd }Ks

4. ({amount, T.id, date }K_* }SKxN,

Figure 6: Protection from fraud.

can query the currency server and check whether B spent

the coin. If B spent the coin, the currency server will issue
A • receipt specifying the coin value ud B's public key.
Otherwise, A can obtain • refund during the window in which
CA is valid. B should keep track of Ca until it expires in cue
A attempts to double spend CB with B. Cx is provided for
additional flexibility in monetary transactions when A does
not ultimately spend the coin with B. Figure 6 shows the
steps of the enhanced protocol. In step 1, A sends coins to
its currency server to obtain • coin triplet s (dateA and date8

denote expiration dates for A's and B's window of operation).
The currency server creates • coin triplet and embeds the
information in the coins as described above. CS1 returns the

triplet, along with possible change <,,Ca> ff the amount
specified was less than the total value of the coins sent in

step 1. In step 3, A passes Ca to B. B must convert the coin

while it's valid, during the first interval. In the next step B
returns • valid receipt to A. In case it doesn't, during the
second time interval, A sends CA to CS1. CSI then checks

whether the coin was spent in the first window of time. If it
was, CS1 returns a receipt specifying B's key and the value
of the coin all signed with CSI's private key. In case the coin
was not spent, CSI will issue a new coin to A.

It should be noted even though B is • client of CS2, it
can still accept coins minted by other anthorities bec•use of
the accounting infrastructure on which NetCash is based.

The anonymity of the payee can be achieved by combining

steps la and Ib of figure 4 with the protocol presented in this
section. In the resulting protocol, the reclept provided to the
payor is not very useful since the payee is anonymous. The
detal]s of the protocol are]eft as an exercise to the reader.

5.4 Off-llne protocols

In an oflline transaction, it is desir•b]e to prevent double
spending whi]e preserving the anonymity of the participating
parties. Transactions conducted in the off]ins mode where
neither party contacts the currency server during the ex-
change can be supported in NetCash by severs] means.

The protocol shown in figure 6 can be used as follows: If
A knows thead of time that it is going to conduct business
with B, steps 1 & 2 can be done in advance. At • later time,
A & B go through an exchange, using steps 3 & 4, where
upon completion, double spending is prevented and payor's
anonymity is maintained. A drawback of this protocol is the
payor has to know in advance with which paxticu]ar party •
transaction will be performed.

Another approach to o/_ine transactions is to use the pro-
tocol shown in figure 4 in conjunction with tamper-proof
electronic wallets. Double spending is prevented by proper-
ties of the hardware. The problems with this •pproach was
described in section 2.

Currently, we are looking into incorporating Ch•um's
post-fact punishment scheme[2] into NetCash. Double spend-

3In case different coin denominationl are desired, A could spec.
ify several amounts, and obtain a number of triplets each having a
particular value.

ingmakes it statistically possible to determine the identity of

a dishonest client. The drawback with this approach is that
post-fact punishment may be unacceptable to linancin] insti-

tutions due to the complications in tracking and punishing
potential violators.

6 Discussion

NetCuh combines the benefits of anonymous transactions
with the scalabiUty of non-uonymous online payment pro-
tocois. It is secure, scalable, valid across administrative do-

mains, ud provides some assurance of anonymity for the
parties to a transaction. In this section, we discuss the ben-

efits ud drawbacks of NetCash, revisiting some of the re-
quirements from section 2.

Where it is possible for at |east one party to interact with
s currency server at some point during a transaction, Net-
Cash is secure. Double spending is either detected at the
time the recipient verifies or exchanges coins with the cur-

rency server, or the coins cu only be spent by the recipient
during an initial time window, allowing the recipient to cash
them in before they cu be double spent.

Because independent currency servers exist NetCash is

more scalable than other e.cash proposals. When coins are

exchanged with remote currency servers, the balances of the
currency servers (the backing of the currency) are adjusted
through the scalable, but non-anonymous, accounting infras-
tructure proposed in [5]. The anonymity of the client is not
jeopardized because only the currency servers themselves are

identified in the non-anonymous transaction.
The anonymity provided by NetCash is weaker than the

unconditional anonymity provided by Chaum. In particular,
at the point that a client purchases coins from a currency
server by check, or cubes in coins, it is posslb]e for the cur-
rency server to record which coins have been issued to a par-
ticular client. It is expected that currency servers will not
do so, and it is likely that the agreement with clients will
specifically preclude it. Additionally, the client can choose
its own currency server, and will choose one that it feels it
can trust.

Once coins have been purchased, they can continue to cir-
culate without identifying the intermediaries. Although the
currency server is involved each time a coin changes hands,
and could conceivably track which coins are exchanged for
others though prohibited from doing so, it will not know the
identity of the intermediaries untl] one of the parties chooses
to identify itself when converting in coins. The longer the
chain of intermediaries, the less information that is available

about who made purchues where.
Although coins may be transferred in our scheme without

inter-,ction with the currency server, when coins are used in

this manner, no assurances exist that a coin hu not been
double spent. Thus, among a group of individuals that trust
one another (or each others tarnper-proof hardware), coin

transfer is possible. Parties to a transaction would need to
eventuai]y verify and exchange their coins to limit their vul-
nerability to dquble spending.

Our approach supports partially ofl]ine operation, where
the parties are oflline during the final exchange; secure op-
erations do require that at least one party interact with a

currency server at some point during a transaction.
Where unconditional anonymity or completely oflline op-

eration is required, our framework can be extended to sup-
port exchanges from Chaum's protocol or from other dec-
tronic currency mechanisms. Such exchanges could be ap-
plied to only those transactions that require them, while

still providing scalability, acceptability, ud interoperability
across mechanisms.

7 Concluslon

This paper presents a framework for electronic trLnsactions
that combines the benefits of anonymous transactions with

the scalability of non-Lnonymous online payment protocols.
Our framework is secure, scalable, acceptable across admiuis-

trative domains, and provides some assurance of uonymity
for the parties a transaction. Our approach supports pax-
tial]y oflKne operation, where the parties are oliline during
the final exchange; secure operations do require that at least
one party interact with a currency server at some point dur-
ing a transaction.

Where unconditional anonymity or completely oflline op-
eration is required our framework can be extended to sup-

port exchanges from other electronic currency mechanisms

for those transactions that require them, while still providing
scalabi]ity, acceptability, and interoperabillty across mechL-
nisms.

Acknowledgments

We would like to give a special thanks to Yacov Yacobi for his
insightful comments regarding e-cash. We would also like to
thank Celeste Anderson, Deborah Estrin, Katia ObraczkL,
Barry Perkins, Jon Postal, Stuart Stubblebine, and Peter
Will for discussion and comments on drafts of this paper. A
great thanks to Shai Herzog for coming up with the name
NetCuh.

References

[1] D. Chaum, B. Boer, E. Heyst, S. Mjo]snes, and A. Steen-
beek. Efficient off-llne electronic checks. In Proceedings

o] Eurocrypt '89, 1989.

[2] D. Chaum, A. Fiat, and N. Naor. Untraceable electronic
cub. In Proceedings o� Crypto '88, 1988.

[3] Chanm D. Security without identification: Transaction
systems to make big brother obsolete. Communication of

the ACM, 28(10), October 1985.

[4] S. Even, O. Go]dreich, and Y. Yacobi. Electronic wallet.
In Proceedings o] Crypto '83, 1983.

[5] B. Clifford Neuman. Proxy-based authorization and ac-
....... for distributed systems. In Proceedings o/the

13th International Conference on Diatributed Computing
Systems, May 1993.

[6] T. Okamoto and K. Ohta. Universal electronic cash. In
Proceedings o/Crypto '91, 1991.

[7] B. Pfitzmann and M. Waldner. How to break and re-
pair a 'provably secure' untraceable payment system. In
Proceedingz o] Crypto '91, 1991.

This research w_. supported in part by the Advanced Research Projects
Agency under NASA Cooperative Agreement NCG-2-539. The views
and conclusions contained in this paper are tho*¢ of the authors and
should not be interpreted u representing the official policies, either
expreucd or implied, of any of the funding agencies. Figures and de-
scriptions in this paper were provided by the authors and arc used
with l_rrniuion. The authors may be reached _t USC/ISI, 4676 Ad-
miraity Way, Marina de] Rey, CA 90292-6696, USA. Telephone -i-I
(310) 822-1511, email ariOisi.edu, bcnOlsi.edu.

Prospero Proc. INET '93 Neumtn & Augart

Prospero: A Base for Building Information Infrastructure

B. Clifford Neuman Steven Seger Augart

Information Sciences Institute

University of Southern California

Abstract

The recent introduction of new network infor.

mation services has brought with it the need for

an information architecture to integrate informa-

tion from diverse sources. This paper describes

Aow Prospero provides a framework within which

such services can be interconnected. The func-

tions of several ezisting information storage and

retrieval tools are described and we show how they

fit the framework. Prospero has been used since

Ig9I by the arehie service and work is underway

to develop application interfaces similar to those

provided by other popular information tools.

I. Introduction

The past several years has brought the intro-

duction of a large number of information services
to the Internet. These services collectively pro-
vide huge stores of information, if only one knows
what to ask for, and where to look. Unfortu-

nately, knowing what and where to ask is a ma-
jor problem; available information is scattered

across many services, and different applications
are needed to access the data in each.

While there have been many attempts to cre-

ate gateways between these services, such gate-
ways have not been as useful as needed. Gate-
ways have typically taken one of two forms. The
first is a portal between two services: one ser-
vice is used to find an instance of a second ser-

vice, to which the user is then connected, leaving
the user to figure out how to query the second

service. The second form of gateway translates
queries from one service into those of another,
and returns the result of the query in a form that
a user of the first service can understand. The

second kind of gateway is easier for the user, but
it is still limited since, as typically implemented,

such gateways do not allow complete integration
of the two information spaces.

This paper shows how the Prospero Directory

Service provides a framework for interconnecting
information services. The paper begins by di-
viding the functions of information systems into
four categories: storage, retrieval, organization,
and search. The role of existing services in this

taxonomy is described, and the role of Prospero
in interconnecting existing information services
using this taxonomy is presented.

II. The Four Functions

The services of existing Internet information
retrieval tools can be broken into four functions:

storage, access, search, and organization.

The storage function is the maintenance of the

data that may subsequently be provided to and

interpreted by remote applications. File systems

support storage, providing a repository where

data may be stored and subsequently retrieved.

Document servers including the Wide Area In-

formation Service (WAIS) [5], menu servers in-

cluding Gopher [7], and hypertext servers includ-
ing World Wide Web [1] also provide the stor-

age function since they manage documents that

are subsequently retrieved and displayed by their
clients.

Whereas storage is primarily a function of the

server, a_cess involves both the client and the

server. The access function is the method by

which the client reads and possibly writes the
data stored on a server. The access method is

typically defined by network protocols including

the File Transfer Protocol (FTP) [11], Sun's Net-

work File System (NFS) [12], the Andrew File

System (AFS) [4], and the application specific
protocols used by WAIS, Gopher, and World
Wide Web. The client and the server must use

the same protocol.

The search function involves the iterative or

recursive retrieval and analysis of information

about data (meta-information), possibly across

multiple repositories, with a specific goal of iden-
tifying or locating data that satisfies the search
criteria. A search heuristic defines the method

and strategy used to conduct the search. Ex-

amples of search tools include Knowbots [6] and
NetFind [13]. Though searches are initiated by

a client when the need for specific data is real-

ized, parts of the search may execute remotely.
For example, the lookup of an entry in a remote

index or directory on a WAIS, Gopher, WWW,

or Prospero server constitutes a search. The Dy-

namic WAIS interface to NetFind [3] takes this a

step further; the server initiates and manages, in
real-time, a search across multiple hosts on behalf
of the client.

DGC-1

Prospero Proc.INET'93 Neuman& Augart

Menu Browsers Filesystem Browsers and Tools

Dedicated Applications

Search Engines Editors

Libraries

Hypertext Browsers

Prospero - Information Fabric

'""'' Servers
Data Access Meta-Information

FTP AFS archie WAIS

NFS Gopher WWW Prospero

WAIS WWW Gopher Menus

e-mail

Figure 1: A framework for network information services

Brute force search in a system as large as

the Internet is not practical. To be effective,

search heuristics must be applied. These heuris-

tics rely on recta-information describing the data
that is available. The more structured this meta-

information, the more useful it is in directing

searches. The organization function involves

the collection, maintenance, and structuring of

such recta-information. Examples of organiza-
tion mechanisms include directories in Prospero,

menus in Gopher, links in hypertext documents,

indices of data local to a WAIS server, and the

file name index maintained by archie [2] for files
scattered across the Internet.

The difference between search and organiza-

tion is that a search is initiated when specific data

is needed, whereas data is organized in advance to
support subsequent searches. Search mechanisms

play a role in the organization of data when the
results of possibly complex or expensive searches

are recorded for subsequent use by applications.

III. A Flexible Framework

Most information services presently available

on the Internet provide their own mechanisms for

each of the four functions, whereas their novel

features are usually confined to their user inter-

faces and/or at most one of the four functions.

As a result, gateways are required to allow appli-
cations from one service to use information main-

tained for another.

A well defined interface is needed that will

allow information maintained by one service to

be used by another. This interface would ap-

pear between search and organization, providing

a common method for applications to query the

recta-information maintained by other services.

A similar interface would separate storage and ac-

cess, providing access by all applications to data

maintained by different services.

Figure 1 shows the location of existing services
in such a framework. Meta-information avail-

able from archie, WAIS, World Wide Web, Pros-

pero, and Gopher menus are available through

a common query mechanism. Menu browsers,

file system tools, hypertext browsers, and ded-

icated applications such as the command line
archie client and NetFind use this mechanism to

query services. Update of meta-information is

also supported, providing a common interface be-

tween hypertext and menu editors and reposito-

ries. Search engines can use the query mechanism

to identify objects of interest. They can then
record the result of the search for subsequent use

by using the update mechanism to add new links
to the information fabric. Section IV discusses

how Prospero provides this functionality.

The separation of storage and access is a bit

more complicated. There are already numerous

access methods in use, and many of the files of
interest in the lnternet exist on servers that will

only support a single protocol. The problem can

DGC-2

Prospero Proc.INET'93 Neumu& Augart

Search

NH.DIR

PROSPERO.IN3_

ATTRIBUTES

ACC_ESS-METHOD

COPYR]GHT-CI,EARANCE

COST

DOCUMENT-ID_

SIZE

_'--ILINK-ATI_IBUTES

ACC__,SS-METHOD(CACHED)

IX)CUMENT-IDENTIFII_ (CACHED

CONFIDENCE

Figure 2: The Prospero naming network

initially be addressed by supporting a common

application library that accepts a reference to an

object obtained from the meta-information ser-
vices, and automatically invokes the appropri-

ate access method to retrieve the object. Pros-

pero currently uses this method. While not de-

scribed in this paper, we are also working on a

common data access protocol for information ser-

vices. That protocol will support gateway ser-

vices to existing data access protocols.

IV. The Model

The information services available on the In-

ternet each have their advantages. In order to

accommodate the needs of each, a mechanism to

integrate these services must be flexible. How-

ever, to be practical and efficient, such a mech-

anism must not become bogged down providing

functionality that will only be used occasionally.

The solution to these competing goals is to pro-

vide a simple but extensible framework on which

the mechanisms specific to individual systems can
be built.

These characteristics are present in the Pros-

pero Directory Service [8]. We chose to concen-

trate initially on integrating tools for organizing

information, applying Prospero as a common pro-
tocol for access to meta-information from multi-

ple information services.

Meta-information is represented by Prospero

in a naming network, a directed graph with la-

beled edges (shown in figure 2). This naming
network provides the fabric through which appli-

cations navigate. Each node in the graph repre-

sents an object. An object can be a file, a di-

rectory, both, or neither (if neither, it only has

attributes). Each object has associated with it a
set of user extensible attributes. These attributes

can have intrinsic meaning, such as the length of

a file, or they can be application specific.

If an object serves as a container for data,
then it is a file and has one or more ACCESS-

METHOD attributes associated with it. Each

ACCESS-METHOD attribute encodes the informa-
tion needed to retrieve the data from a data

repository using a particular access method.

If an object is a directory it contains a set of

named links to other objects. The labeled edges

in the naming network correspond to these links.

The names on the links serve as sign posts to

help the user, or the user's application, navigate
through the naming network in search of the de-

sired information. Applications that treat the

naming network as a filesystem use the names
of the links as components of filenames, allowing

files in subdirectories to be named by the concate-
nation of the names of the links that are followed

to reach them.

DGC-3

Prospero Proc. INET '93 NeumLn & Aug_rt

When searching for information, users and
applications also use attributes. In addition to

object attributes, attributes can be stored with

links. Such link attributes either store additional

information about the link such as annotations,

or they cache information about the object to
which the link refers. Cached attributes allow an

application to retrieve attributes for the objects
in a directory in s single query, rather than mak-

ing individual requests for the attributes of each

object referenced from the directory.

A filter can also be associated with a link. A

filter, and a second kind of link called a union

link, allow a view of a directory to be created that
is a function of another view. Filters and union

links provide a mechanism for users to encode,

on a link, methods to be applied when search-

ing. Because they are applied when a directory
is listed, the resulting view is kept up-to-date,

even when the underlying information changes.

Filters and union links are described in greater

detail elsewhere [9].

V. Implementation Notes

Prospero was designed to be simple but exten-

sible. The protocol is simple, supporting stateless
queries for attributes and the contents of direct<>-

ries. The protocol is layered on top of a reliable

delivery mechanism implemented using UDP. In

the normal case, a query requires a single packet

for the request and a single packet response, elim-

inating the cost associated with setting up and

breaking down a connection. This low cost is par-
ticularly important for clients that contact mul-

tiple servers in series as is often the case when

resolving names.

Despite the simplicity of the protocol, Pros-

pero is extremely flexible. Functions specific to
an application rely on the extensible attribute

mechanism. Applications not needing that func-

tionality ignore the additional attributes, while
applications that know about it can take action
based on the value of the attributes.

_I. Integrating Services

This section describes how the meta-

information maintained by several Internet in-

formation services can be represented using the
model from section IV.

Archie [2] constructs an index of files from In-

ternet anonymous FTP sites and makes the in-

dex available to applications using the Prospero
protocol. A query to the archie database corre-

sponds to a Prospero directory query for a direc-

tory whose name includes the arguments of the

query. These arguments include a string that is
matched against the filenames in the index. The

result of a query is represented as the contents of

the Prospero directory. Upon receipt of the di-

rectory query, the archie server extracts the argu-

ments, performs a query on the archie database,
and returns the results to the client. Each file

matching the query is represented as a link in the

directory to the file on the remote FTP site. The

information needed to retrieve the matching file
is returned as part of the ACCESS-METHOD at-
tribute associated with the link. Other attributes

are also returned, including file size and the time

of last modification. One can apply a Prospero

filter to a directory query to restrict the links
that are returned to those for files on hosts in a

particular part of the network.

Gopher [7] allows users to browse menus con-

figured by Gopher service providers. By select-

ing menu items, users are able to run applica-

tions, search local databases, select and display
files and sub-menus, and connect to other ser-

vices available on the Internet. A Gopher menu
can he represented as a Prospero directory. The

individual items in the menu correspond to links

in the directory. Submenus are links to other
directories. Links to files have an associated

ACCESS-METHOD attribute that provides the in-
formation needed to retrieve the file. Attributes

associated with links also specify how the data

in a file should he presented, for example how

to display images or play back an audio record-

ing. Links to Internet services reachable by tel-

net have an ACCESS-METHOD attribute of type
TELNET; this ACCESS-METHOD contains the in-
formation needed to telnet to the service.

The WAIS server [5] maintains a full text

index to a set of documents on a single sys-

tem, allows that index to he queried remotely,
and allows remote read access to the documents.

The WAIS client provides a common front end

for queries and access to documents on multiple

WAIS servers. A WAIS query can be represented
as a Prospero directory in much the same man-

ner as an archie query. Like archie, the result

of the query would be represented by the links

in the directory. Each of these links would be a

reference to a document on the server itself and
the ACCESS-METHOD associated with the link

would specify the WAIS access method. Other
attributes of the link could include the relative

confidence in the match. To retrieve a matched

document the application would pass the selected

link to the Prospero library function pfs_open()

which would automatically invoke the WAIS ac-
cess method to retrieve the document from the
WAIS server.

DGC-4

Prospero Proc.INET'93 Neumu& Augart

World Wide Web is a hypertext browser that

supports the interconnection of collections of doc-

uments with links that originate within the docu-

ments themselves. Links to non-hypertext docu-

ments are also supported. A hypertext document

may be represented in Prospero as a node that is
both a file and a directory. The document that is

displayed to the user would be retrieved accord-

ing to the ACCESS-METHOD attribute associated
with the node. The links in the directory would

represent links to other documents. The name of
each link would contain the text of a tag within

the document from which the link is to originate.

Offsets in the target document can be represented
as attributes of the link.

Prospero allows users to create their own di-
rectory hierarchies from which they can make

links to directories and objects of interest. Since

queries to other services and the objects stored

by them are represented as nodes in the Pros-

pero naming network, users can create directo-

ries in which the linked objects reside in different
services, but can be accessed using a common

protocol, thus supporting the integration of in-
formation across services.

VII. Security

Security is an important feature that is miss-

ing from most information systems on the Inter-

net. Without fine grained control for access to in-
formation, the owners of certain information will

not make it available using such systems. Since

our goal is to allow the integration of information
from all sources on the Internet, security must

be an important consideration. Security is espe-

cially important in our model since we support
the remote modification of information.

In Prospero, access control lists (ACLs) may

be associated with directories in the naming net-

work, and with individual links within a direc-

tory. The permissions supported include read,
modify, insert, delete, list, and administer. Pros-

pero requests are authenticated and the iden-
tity of the client is used to determine the access

permissions that apply. Several authentication

methods are supported including authentication

based on the client's Internet address, the use of

passwords, and Version 5 of Kerberos.

Hooks are also present to support distributed

authorization and accounting mechanisms [10].

Support for accounting will become critical as
new for-hire information services are introduced.

VIII. Status

Prospero has been available since December
1990. Recent revisions to the protocol allow more

flexible integration of information services. Pros-

pero has been used since Spring of 1991 to make
available meta-information maintained by archie.

Work is underway to develop application inter-
faces for Prospero that provide the functionality

of Gopher, WAIS, and World Wide Web. To find

out more about Prospero, or for directions on re-

trieving the latest distribution, send a message to
info-prospero@isi.edu.

IX. Summary

A huge amount of information is available on
the Internet. Unfortunately, this information is

scattered across many services and different ap-

plications are needed to access the data in each.
A framework was defined within which such in-

formation services can interoperate. By provid-

ing a common method for applications to query

the meta-information maintained by the services

that organize data on the Internet, information

maintained by one service can used by all. Pros-

pero provides such an interface. A service that

uses Prospero to export meta-information about

the data it provides will be usable by many appli-

cations. Similarly, an application that uses Pros-

pero to find files will be able to access information

from many services.

Acknowledgments

Many individuals contributed to the design

and implementation of Prospero. Ed Lazowska,
John Zahorjan, David Notkin, Hank Levy, and

Alfred Spector helped refine the ideas that ul-

timately led to the development of Prospero.

Kwynn Buess, Steve Cliffe, Alan Emtage, George

Ferguson, Bill Griswold, Sanjay Joshi, Bren-

dan Kehoe, Dan King, and Prasad Upasani

helped with the implementation of Prospero and

Prospero-based applications. Gennady Medvin-

sky and Stuart Stubblebine commented on drafts

of this paper.

References

[1] Tim Berners-Lee, Robert Cailliau, Jean-
Francois Groff, and Bernd Pollermann.

World-wide web: The information universe.

Electronic Networking: Research, Applica-

tions and Policy, 2(1), Spring 1992.

DGC-5

Prospero Proc.]NET'93 Neuman& Aug_rt

[2]AlanEmtageandPeterDeutsch.archie:An
electronicdirectoryservicefortheInternet.
In Proceedings of the Winter 1992 Useniz

Conference, pages 93-110, January 1992.

[3] Darren R. Hardy. Scalable internet resource

discovery among diverse information. Tech-

nical Report CU-CS-650-93, Department of

Computer Science, University of Colorado,

Boulder, April 1993. M.S. Thesis.

[4] John H. Howard, Michael L. Kazar,

Sherri G. Menses, David A. Nichols,

M. Satyanarayanan, Robert N. Sidebotham,
and Michael J. West. Scale and performance

in a distributed file system. A CM Trans-

actions on Computer Systems, 6(1):51-81,
February 1988.

[5] Brewster Kahle and Art Medlar. An in-

formation system for corporate users: Wide

area information systems. Technical Report

TMC-199, Thinking Machines Corporation,
April 1991.

[61 Robert E. Kahn and Vinton G. Cert. The

Digital Library Project; Volume 1: The

world of Knowbots (draft). Corporation for

National Research Initiatives, 1988.

[7] Mark McCahill. The lnternet gopher:
A distributed server information system.

ConneXions - The lnteroperability Report,

6(7):10-14, July 1992.

[8] B. Clifford Neuman. Prospero: A tool for or-

ganizing Internet resources. Electronic)Vet-

working: Research, Applications and Policy,

2(1):30-37, Spring 1992.

[9] B. Clifford Neuman. The Prospero File Sys-
tem: A global file system based on the Vir-

tual System Model. Computing Systems,

5(4):407-432, Fall 1992.

[10] B. Clifford Neuman. Proxy-based autho-

rization and accounting for distributed sys-
tems. In Proceedings of the 18th Interna-

tional Conference on Distributed Computing

Systems, pages 283-291, May 1993.

[11]

[12]

[13]

Jon B. Postel and J. K. Reynolds. File trans-

fer protocol. DARPA Internet RFC 959, Oc-
tober 1985.

R. Sandberg, D. Goldberg, S. Kleiman,

D. Walsh, and B. Lyon. Design and imple-

mentation of the Sun Network File System.
In Proceedings of the Summer 1985 Useniz

Conference, pages 119-130, June 1985.

Michael F. Schwartz and P. G. Tsirigotis.

Experience with a semantically cognizant in-

ternet white pages directory tool. Journal of

lnternetworking: Research and Ez_ericncc,
2(1):23-50, 1991.

Author Information

Clifford Neuman is a scientist at the Informa-

tion Sciences Institute of the University of South-

ern California. After receiving a Bachelor's de-
gree from the Massachusetts Institute of Technol-

ogy in 1985 he spent a year working for Project

Athena where he was one of the principal design-

ers of the Kerberos authentication system. He
holds M.S. and Ph.D. degrees from the Univer-

sity of Washington, where he initially developed

Prospero as part of his dissertation. His research

focuses on problems of system organization and

security in distributed systems.

Steven Seger Augart is member of the research
staff at the Information Sciences Institute of the

University of Southern California. He received

a Bachelor's degree from Harvard University in

1989 and an M.S. from the University of Califor-

nia at Irvine in 1992, with various bouts work-

ing as a systems programmer along the way. His

work at ISI has focused on the development of
Prospero as a scalable information infrastructure

for large distributed systems.

This research w_. supported in part by the National Sci-
ence Foundation (Grant No. CCR-8619663), the Wuhington
Technology Centers, Digital Equipment Corporation, and the
Advanced Research Projects Agency under NASA C.ooperL-
tire Agreement NCC.-2-S39. The views and conclusions con-
ttined in this paper sx¢ those of the author_ lind should not

be interpreted _, representing the of_cial policies, either ex-
pressed o_ implied, of any of the funding agencies. Figures
lind descr[ptlons in this paper were provided by the authors
and arc used with permission. The authori may be reached
at USC/ISI, 4676 Admiralty Way, Marina del Rey, CA 90292-
6695, USA. Telephone +I (310) 822-151 I, emsil bcnOisi.edu,
swa@isi.edu.

DGC-6

Using Prospero to Support Integrated

Location-Independent Computing

B. Clifford Neuman Steven Seger Augart Shantaprasad Upasani

Information Sdences Institute

University of Southern California

Abstract

As computers become pervasive, users will access processing, storage, and communication re-
sources from locations that have not been practical in the past. Such users will demand support for
location-independent computing. While the basic system components used might change as the user
moves from place to place, the appearance of the system should remain constant.

In this paper we discuss the role of, and requirements for, directory services in support of in-
tegrated, location-independent computing. We focus on two specific problems: the server selection
problem and the user location problem. We present solutions to these problems based on the Pros-
pero Directory Service. The solutions demonstrate several unique features of Prospero that make it
particularly suited for support of location.independent computing.

1 Introduction

As the use of computers becomes pervasive the distinction between computer networks and com-
puter systems will blur. In the ideal world, users will think of a computer network and the systems

connected to it as a single system, rather than as a collection of systems connected by networks.
Users will not want to use a different system each time they change their location. Although users

will want to see a single system, they won't want to see the same system as every other user. Each
user will want a system that is tailored to his or her particular needs.

This paper begins with a discussion of the characteristics of and requirements for what we call
pervasive computing. We examine two problems that arise in such systems, the server selection

problem and the user location problem, discussing the role played by a distributed directory service
in their solution. In so doing, we describe the Prospero Directory Service, highlighting important
features, and describing how it can be used to solve these problems.

2 Pervasive Computing

Pervasive computing combines aspects of ubiquitous computing with the integration of informa-
tion and resources from many sources, within a single system tailored to the needs of a particular
user. Whereas the focus of ubiquitous computing has been on the devices and the communication

infrastructure, allowing the use of large and small computing devices from many locations, the focus
of pervasive computing is on mechanisms that allow the pieces to be tied together to form a coherent
whole. The two areas are not disjoint; each includes the other, only the perspective is different.

There are several characteristics to pervasive computing that place new demands on system
organization and structure. One of the primary characteristics is mobility. The term mobility
applies even to systems that don't support wireless communication; it is the mobility of users that

is critical to pervasive computing. Users interact with the system from more than one location. We
already see this on large university campuses where students log in from public terminal clusters.

29

Proceedings of the Symposium on Mobile and Ltr.ation-Independent Computing, Cambridge, MA, August 1993.

#__ PAGE BL.AHK NO'[FILMED

The use of portable computers while traveling provides another example. In the future, users will

be able to interact with the system through whatever I/O device is within reach as they travel from
location to location.

A second characteristic of pervasive computing is scale. The number of objects and services to

be managed can easily overwhelm the user, the geographic expanse of the system adds constraints
to be considered when selecting servers, and the lack of a single organization that controls the

system makes organization of these resources difficult. These characteristics can be addressed in

part through support for customization. Users should be able to choose the resources and objects

of interest, and treat the selected resources as a single system [5].

The directory service will play a critical role tying together the components of future systems.

The requirements for such a directory service are greatly affected by the scale of the system, and

the mobility of its users. One of the biggest problems to be addressed is support for transient

information. The transient information in such a system comes in two forms: first, the choice of

servers for certain operations may change as the user moves from location to location; and second,

information about users:and other mobile objects needs to be maintained.

3 The Server Selection Problem

We begin our discussion by considering the server selection problem. Selecting resources for use
in a centralized system is straightforward: users choose from among the resources available and

select defaults which rarely change. In traditional distributed systems, the selected resources are

then located through remote name maps or directory services such as Sun's Network Information

Services (formerly known as Yellow Pages) [6] and Hesiod [3].
The mobility of users complicates server selection; the user's choice of resources will often vary

according to location. For example, while at home a user might want to use a printer at home and
while at work, one down the hall. While traveling the user might want output faxed to the hotel's

front desk, but only if there is no per-page charge for incoming faxes. Alternatively, a user might

want output sent to the printer at home so that it is waiting upon return.

It should be possible for users to specify defaults in such a way that the binding is determined

dynamically, when the service is needed, and based on a combination of user specified factors (e.g.,

cost and reliability), application requirements (e.g., support for PostScript), and transient factors

(e.g., load and proximity).

3.1 Using Prospero to Solve the Server Selection Problem

With Prospero, users define a virtual system which, among other things, specifies the mapping

of names to servers. This mapping is used to select the servers used by applications. Figure 1

shows how a virtual system is represented using Prospero. In the figure, the link labeled ROOT is a
reference to the root of the user's file system through which the user sees the same files regardless

of the location from which logged in. The Prospero File System is described elsewhere [4]. The

directory referenced by the SESSIONS link identifies the locations from which the user is logged in
and is described in Section 4.

In this virtual system, the server selection criteria are encoded in the CONFIC/SERVERS directory.

In a traditional directory service, such a mapping would not provide the flexibility that is needed for

pervasive computing. However, several features of the Prospero Directory Service allow the mapping
_o be determined dynamically. These features include virtual system aliases, union links, and filters.

3.1.1 Virtual system aliases

Prospero maintains several virtual system aliases that provide well defined starting points from

which names may be resolved. These aliases end with the string #: and identify the virtual systems
associated with the user, the home processor for the current login session 1 (the session), the processor

on which an application is running (the platform), and open file descriptors.

1The virtual system for the session is usociated with the workstation or I/O device through which the user is
interacting with the system.

3O

Proceedings of the Symposium on Mobile and Location-Independent Computing, Cambridge, MA, August 1993.

ROOT SESSIONS

ATrRIBUTES

NAME

PRINCIPAL

TYPE

NcumanB.Clifford

KERBEROS bcn@isi.edu

VIRTUAL-SYSTEM

SERVERS

SAL-234.USC,EDU

PRINTERS

!

LINK-ATTRIBUTES

DISPLAY :0

EXPIRES 9307261517Z

LOCATION Salvatori234(x0-4518)

NOTES SENDS-A_

VIRTUAL SYSTEMS FIL'II/RS

ATrRIBU'IT_COST<=.05J>OSTSCRIFI3

PROXIMITY(SESSION#:,NEAREST)

Figure 1: Structure of a Virtual System

In the figure, the directory CONFIG/SERVERS/PRINTERS defines the printers available to the user.

If the user wanted to use the same printers always, the link would refer to a directory that explicitly

named the printers to be used. Here, the user chose to define the available printers as a symbolic

link to the directory of printers for the session. Because the target of the symbolic link begins with

the string SESSION#: the rest of the name is resolved in the virtual system for the session, which is

reachable through the node for the login platform and is part of the cloud labeled Platform-Info in

the figure.

3.1.2 Union Hnks

A user who wanted to choose from among the printer at home, the one at work, and those nearby,
could use a union link to create a dynamic view of available printers. The CONFIG/SERVERS/PRINTERS

link would refer to a directory with references to the printers at the user's home and office. That di-

rectory would include a symbolic union link to the directory of printers for the session. The resulting

directory would appear to contain the union of the two directories.

3.1.3 Filters

Users should be cautious when allowing the system to select servers for use in unfamiliar locations.

Business travelers have been taught this lesson by unscrupulous alternative telephone operator ser-

vices that charge exorbitant fees for long distance phone calls. Using Prospero, users are able to

constrain the selection of servers by applying a filter to a directory. A filter is a function attached to

a link that modifies the result of a directory query. In figure 1 the user applied the attribute() filter

to restrict the selection of printers to those charging no more than 5 cents per page, and supporting

31

Proceedings of the Symposium on Mobile and Location-Indq3endcnt Computing, Cambridge, MA, August 1993.

PostScript.Of theprintersselectedby the attribute() filter, the proximity() filter selects the

closest, provided that the implementer of the proximity() filter devised an appropriate heuristic.

A filter can also change the order in which servers are presented to the user setting the COLLATION-

ORDER attribute of the links it returns. This allows filters to sort servers according to user specified
criteria.

Prospero supports two kinds of filters: losdable and predefined. Loadable filters are dynam-

ically loaded and executed during name resolution (their present implementation is not portable
and presents security problems). Predefined filters are compiled into the name resolution library.

Predefined filters have registered names and must be present in the name resolver (or on the server

for some filters). Predefined filters must be widely supported to be useful; therefore they usually

provide general operations such as selection based on the values of attributes.

3.1.4 Supporting mobile platforms

Our discussion so far has assumed that a stable platform exists for each session, and that a server
directory has been defined for each platform. The discussion has ignored problems related to mobile

platforms. The mobile platform problem can be addressed by another layer of indirection: the

platform might itself use a filter in the definition of its server directory. Such a filter might locally
broadcast a query in search of nearby platforms willing to provide such a directory. The resulting

directory would include links for each server that responds.

3.1.5 Presenting selections to the user

When selecting a server, an application can indicate additional constraints to be applied by specifying

additional filters. Once all filters have been applied, if the result is a single link, the referenced server

can be used. For example, the NEAREST argument to the proximity() filter in the figure might
result in the automatic selection of the nearest printer.

If the directory contains multiple links after the application of all filters, then the user could be

prompted through a dialog box to select one. This might occur if the argument to the proximity()

filter were specified as NEAREST 5, resulting in the return of the 5 nearest printers. Once selected by
the user, the choice should remain in effect until some event specified by the user, such as a change

in location, or a change in the list of available servers.

4 The User Location Problem

The user location problem is a second problem that illustrates the requirements imposed on a

directory service by user mobility. In centralized systems, locating an active user is easy; users are

either logged in, or they aren't. If logged in, the system records the the terminal in use and makes

this information available to applications such as _inger, vrite, and stnd. In a distributed system,

the problem is considerably more complex.

A common approach to the user location problem is to replicate the data on all hosts. This is the
approach taken by rwho. Systems broadcast the names of the users that are logged in, and others

store this data locally where it can he searched by the user or application. The primary drawback

of this approach is that it doesn't scale very well. A second concern is privacy; users might not want
others to know where they are logged in, or that they are logged in at all.

A different approach is taken by the Zephyr [2] system at MIT's Project Athena [1]. Zephyr

provides a single database that may he consulted when a user's location is needed. This database

is replicated for reliability (technically, Zephyr provides a notification service that relies on this

database, hut it is the database that is of interest here). Zephyr addresses privacy because each

user decides whether to register a session with Zephyr, and to what classes of other users the login
location is to be visible. Zephyr does not provide fine-grained control over access to user location

data. Though suitable for a large campus, the use of Zephyr as a user location database does not
scale across administrative domains.

32

Proceedings of the Symposium on Mobile and Loc_on-Independent Computing, Cambridge, MA, August 1993.

4.1 Using Prospero to Solve the User Location Problem

A thirdapproachis to useadirectoryserverto store user location information. Such a directory

server would have to tolerate frequent updates. If a user is to be able to specify the principals who

can obtain his or her location, then support for fine-grained access control is also necessary. Finally,

it must be possible to authenticate both updates and queries.

The Prospero Directory Service already maintains information about a user's virtual system. This
information has been extended to include information about login sessions. At Iogin, an entry is

added to a list of sessions, and at iogout the entry is removed. By associating an expiration time

with the entry, it is possible to detect sessions that are not properly terminated. By placing an
access control list on the list of sessions, a user can specify on a per-principai basis the individuals

to which the session is visible. The SESSIONS link in figure 1 points to the directory that maintains

a list of sessions.

Prospero is a distributed directory service, and it is likely that user information will be distributed

across a large number of systems, maintained by multiple organizations. Each directory server
enforces its own access control. As such, if a user's directory information is stored on a trusted

server for the user's organization, the user's privacy depends only upon the security of that server.

Through its support for customization, Prospero allows a user to define a set of colleagues, and
the name used to refer to each. This set initially contains the names of other users in the local

organization, with users beyond the organization named hierarchically based on the name of the

organization to which they belong. Users can define their own short names for remote colleagues,
after which they are referred to no differently than if they were local. This is represented in figure 1

by the CONFIG/USERS directory. In fact, this customization mechanism allows a user to define the

set of colleagues considered local for use by :linger; when run with no arguments it displays the

locations of users currently active and identified as colleagues by the user.

When using modified versions of commands such as send, talk, or finger, the name of the

target (another user) is specified relative to the CONFIG/USERS directory. The command consults
the directory server to determine the location of the target user, and if found, performs the requested

operation.

5 Establishing a Session

The solutions to both the server selection and the user location problems depend on several

operations being performed when a new login session is established. This section describes what

happens when a user logs into a system supporting the Prospero login program. In this discussion,

the platform is the processor on which the application (in this case the login program) runs.
When a user attempts to log in to a system running the Prospero login, the system uses the

name of the user to find the user's virtual system. For local users the virtual system is found in the

directory of virtual systems for the local site. For remote users the virtual system is found starting

from a directory that identifies other sites. The PRINCIPAL attribute associated with the user's

virtual system is examined and used to select an appropriate authentication method. The user is
authenticated and the login program determines whether the user is authorized to use the resources

of the platform.
Once logged in, the namespace is defined by the user's virtual system and the virtual system alias

SESSION#: is defined as the virtual system of the platform on which the user logged in. Next, if

the user was suitably authenticated, an entry is made in the SESSIONS directory of the user's virtual

system recording the platform, the Iogin time, an expiration time, and other information associated

with the session. During a session, name resolution occurs in the name space defined by the user's

virtual system. When the session is terminated, the entry in the SESSIONS directory is removed.

33

Proceedings of the Symposium on Mobile and Location-Independent Computing, Cambridge, MA, August 1993.

6 Status

The Prospero Directory Service has been available since December 1990 and has been used to
support the integration of information services on the Internet. The recent release of Version 5

of Prospero allows it to be more easily integrated with other applications. This paper described

some of the ways that Prospero can be used to support integrated location-independent computing.
Prospero presently provides the basic mechanism needed to address the problems discussed in this
paper. We have started work on the user location problem as part of the implementation of a
Prospero-based login program. We have not yet started work on the server selection problem, but
plan to do so in the near future. To find out more about Prospero, or for directions on retrieving
the latest distribution, send a message to info-prospero@isi.edu.

7 Summary

Pervasive computing places new demands on directory services. Among the demands is a need
to support transient data, fine-grained authorization for queries and updates, and the ability to
support dynamic (functional) bindings from names to servers and objects. These requirements

are met by the Prospero Directory Service, which can play a role in support for truly integrated,
location-independent computing.

Acknowledgments

Many individuals contributed to the design and implementation of Prospero. Ed Lazowska, John
Zahorjan, David Notkin, Hank Levy, and Alfred Spector helped refine the ideas that ultimately led

to the development of Prospero. Kwynn Buess, Steve Cliffe, Alan Emtage, George Ferguson, Bill
Griswold, Sanjay Joshi, Brendan Kehoe, and Dan King helped with the implementation of Prospero
and Prospero-based applications. Celeste Anderson, Sio-Man Cheang, Gennady Medvinsky, Santosh
Rao, Eve Schooler, and Stuart Stubblebine commented on drafts of this paper.

References

[1] George A. Champine, Daniel E. Gear Jr., and William N. Rub. Project Athena as a distributed
computer system. IEEE Computer, 23(9):40-51, September 1990.

[2]C. Anthony DellaFera, Mark W. Eichin, Robert S. French, David C Jedlinsky, John T. Kohl,
and William E. Sommerfeld. The Zephyr notification service. In Proceedings of the Winter 1988
Useniz Conference, pages 213-219, February 1988.

[3] Stephen P. Dyer. The Hesiod name server. In Proceedings of the Winter 1988 Useniz Conference,

pages 183-189, February 1988.

[4] B. Clifford Neuman. The Prospero File System: A global file system based on the Virtual System
Model. Computing Systems, 5(4):407-432, Fall 1992.

B. Clifford Neuman. The Virtual System Model: A Scalable Approach to Organizing Large
Systems. PhD thesis, University of Washington, June 1992. Department of Computer Science
and Engineering Technical Report 92-06-04.

[6] Sun Microsystems. Yellow Pages Protocol Specification, February 1986. In Networking on the
Sun Workstation.

_)USE,'_IX Association 1993. Thil paper wu published in the Proceedings of the Uscnix Symposium on Mobile and Location-
Independent Computing, August 1993. Permission to copy without fee all or part of this materiai is granted, provided that
the copies are not made or distributed for commercial advantage, the USENIX Association copyright notice and the title
and date of publication appear, and that notice is given that copying is by permission of the USENIX Association. To
copy or republish otherwise requires specific permission from the USENIX Association. This research was supported in part
by the National Science Foundation (Grant No. CClL8619663), the Washington Technology Centers, Digital Equipment
Corporation, and the Advanced Research Projects Agencyunder NASA Cooperative Agreement NCC-2-539. The views and
conclusions contained in this paper arc those of the authors and should not be interpreted u representing the official policies,
either expressed or implied, of any of the funding agencies. Figures and descriptions in this paper were provided by the
authors and are used with permission. The authors may be reached at USC/ISI, 4676 Admiralty Way, Marina del P, ey, CA
90292-6695, USA. Telephone +1 (310) 822-1511, email bcnOisi.edu, swaOisl.edu, pruadOisi.edu.

34

Proceedings of the Symposium on Mobile and Location-lndependent Computing, Cambridge, MA, August 1993.

